Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 914
Filtrar
1.
Development ; 151(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38358799

RESUMO

The Wnt/ß-catenin signaling governs anterior-posterior neural patterning during development. Current human pluripotent stem cell (hPSC) differentiation protocols use a GSK3 inhibitor to activate Wnt signaling to promote posterior neural fate specification. However, GSK3 is a pleiotropic kinase involved in multiple signaling pathways and, as GSK3 inhibition occurs downstream in the signaling cascade, it bypasses potential opportunities for achieving specificity or regulation at the receptor level. Additionally, the specific roles of individual FZD receptors in anterior-posterior patterning are poorly understood. Here, we have characterized the cell surface expression of FZD receptors in neural progenitor cells with different regional identity. Our data reveal unique upregulation of FZD5 expression in anterior neural progenitors, and this expression is downregulated as cells adopt a posterior fate. This spatial regulation of FZD expression constitutes a previously unreported regulatory mechanism that adjusts the levels of ß-catenin signaling along the anterior-posterior axis and possibly contributes to midbrain-hindbrain boundary formation. Stimulation of Wnt/ß-catenin signaling in hPSCs, using a tetravalent antibody that selectively triggers FZD5 and LRP6 clustering, leads to midbrain progenitor differentiation and gives rise to functional dopaminergic neurons in vitro and in vivo.


Assuntos
Receptores Frizzled , Quinase 3 da Glicogênio Sintase , beta Catenina , Humanos , beta Catenina/metabolismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Mesencéfalo , Sistema Nervoso/metabolismo , Via de Sinalização Wnt , Animais , Ratos
2.
J Biochem Mol Toxicol ; 38(2): e23654, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38348712

RESUMO

The occurrence of pelvic organ prolapse (POP) seriously affects women's quality of life. However, the pathogenesis of POP remains unclear. We aimed to clarify the role of Frizzled class receptor 3 (FZD3) in POP. FZD3 expression in the vaginal wall tissues was detected using immunohistochemistry, real-time polymerase chain reaction, and western blot analysis. Then, vaginal wall fibroblasts (VWFs) were isolated from patients with POP and non-POP, and were identified. Cell viability and apoptosis were evaluated using Cell Counting Kit-8 and flow cytometry, respectively. Extracellular matrix (ECM) degradation was assessed by western blot analysis. The results illustrated that FZD3 was downregulated in POP. VWFs from POP had lower cell viability, ECM degradation, and higher apoptosis. Knockdown of FZD3 inhibited cell viability, ECM degradation, and promoted apoptosis of VWFs, whereas overexpression of FZD3 had opposite results. Moreover, IWP-4 (Wingless-type [Wnt] pathway inhibitor) reversed the role of FZD3 overexpression on biological behaviors. Taken together, FZD3 facilitates VWFs viability, ECM degradation, and inhibits apoptosis via the Wnt pathway in POP. The findings provide a potential target for the treatment of POP.


Assuntos
Prolapso de Órgão Pélvico , Via de Sinalização Wnt , Humanos , Feminino , Qualidade de Vida , Matriz Extracelular/metabolismo , Prolapso de Órgão Pélvico/metabolismo , Prolapso de Órgão Pélvico/patologia , Fibroblastos/metabolismo , Apoptose , Receptores Frizzled/metabolismo
3.
J Gene Med ; 26(1): e3636, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009760

RESUMO

BACKGROUND: Abnormal N6-methyladenosine (m6A) modification has become a driving factor in tumour development and progression. The linc00659 is abnormally highly expressed in digestive tract tumours and promotes cancer progression, but there is little research on the mechanism of linc00659 and m6A. METHODS: The expression of linc00659 in colorectal cancer (CRC) tissues and cells was assessed by a quantitative real-time PCR. The proliferative capacity of CRC cells was determined by colony formation, Cell Counting Kit-8 and 5-ethynyl-2 deoxyuridine assays, and the migratory capacity of CRC was determined by wound healing and transwell assays and tube formation. In vivo, a xenograft tumour model was used to detect the effect of linc00659 on tumour growth. The Wnt/ß-catenin signalling pathway and related protein expression levels were measured by western blotting. The binding of linc00659 to insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) was assessed by RNA pull-down and an immunoprecipitation assay. The effect of IGF2BP1 on FZD6 was detected by an RNA stability assay. RESULTS: The expression of linc00659 was abnormally elevated in CRC tissues and cells compared to normal colonic tissues and cells. We confirm that linc00659 promotes the growth of CRC cells both in vivo and in vitro. Mechanistically, linc00659 binds to IGF2BP1 and specifically enhances its activity to stabilize the target gene FZD6. Therefore, linc00659 and IGF2BP1 activate the Wnt/ß-catenin signalling pathway, promoting cell proliferation in CRC. CONCLUSIONS: Our results show that linc00659 and IGF2BP1 cooperate to promote the stability of the target FZD6 mRNA, thereby facilitating CRC progression, which may represent a potential diagnostic, prognostic and therapeutic target for CRC.


Assuntos
Adenina , Neoplasias Colorretais , RNA Longo não Codificante , Via de Sinalização Wnt , Animais , Humanos , Adenina/análogos & derivados , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro
4.
Dev Cell ; 59(2): 244-261.e6, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38154460

RESUMO

WNT morphogens trigger signaling pathways fundamental for embryogenesis, regeneration, and cancer. WNTs are modified with palmitoleate, which is critical for binding Frizzled (FZD) receptors and activating signaling. However, it is unknown how WNTs are released and spread from cells, given their strong lipid-dependent membrane attachment. We demonstrate that secreted FZD-related proteins and WNT inhibitory factor 1 are WNT carriers, potently releasing lipidated WNTs and forming active soluble complexes. WNT release occurs by direct handoff from the membrane protein WNTLESS to the carriers. In turn, carriers donate WNTs to glypicans and FZDs involved in WNT reception and to the NOTUM hydrolase, which antagonizes WNTs by lipid moiety removal. WNT transfer from carriers to FZDs is greatly facilitated by glypicans that serve as essential co-receptors in Wnt signaling. Thus, an extracellular network of carriers dynamically controls secretion, posttranslational regulation, and delivery of WNT morphogens, with important practical implications for regenerative medicine.


Assuntos
Glipicanas , Proteínas Wnt , Proteínas Wnt/metabolismo , Glipicanas/metabolismo , Via de Sinalização Wnt , Desenvolvimento Embrionário , Lipídeos , Receptores Frizzled/química , Receptores Frizzled/metabolismo
5.
Exp Eye Res ; 239: 109769, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154732

RESUMO

Genetic and environmental factors can independently or coordinatively drive ocular axis growth. Mutations in FRIZZLED5 (FZD5) have been associated with microphthalmia, coloboma, and, more recently, high myopia. The molecular mechanism of how Fzd5 participates in ocular growth remains unknown. In this study, we compiled a list of human genes associated with ocular growth abnormalities based on public databases and a literature search. We identified a set of ocular growth-related genes from the list that was altered in the Fzd5 mutant mice by RNAseq analysis at different time points. The Fzd5 regulation of this set of genes appeared to be impacted by age and light damage. Further bioinformatical analysis indicated that these genes are extracellular matrix (ECM)-related; and meanwhile an altered Wnt signaling was detected. Altogether, the data suggest that Fzd5 may regulate ocular growth through regulating ECM remodeling, hinting at a genetic-environmental interaction in gene regulation of ocular axis control.


Assuntos
Receptores Frizzled , Microftalmia , Animais , Humanos , Camundongos , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Regulação da Expressão Gênica , Via de Sinalização Wnt
6.
Endocrinology ; 165(1)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38060684

RESUMO

During the secretory phase of the menstrual cycle, elongated fibroblast-like mesenchymal cells in the uterine endometrium begin to transdifferentiate into polygonal epithelioid-like (decidual) cells. This decidualization process continues more broadly during early pregnancy, and the resulting decidual tissue supports successful embryo implantation and placental development. This study was carried out to determine if atonal basic helix-loop-helix transcription factor 8 (ATOH8) plays a role in human endometrial stromal fibroblast (ESF) decidualization. ATOH8 messenger RNA and protein expression levels significantly increased in human ESF cells undergoing in vitro decidualization, with the protein primarily localized to the nucleus. When ATOH8 expression was silenced, the ability of the cells to undergo decidualization was significantly diminished. Overexpression of ATOH8 enhanced the expression of many decidualization markers. Silencing the expression of ATOH8 reduced the expression of FZD4, FOXO1, and several known FOXO1-downstream targets during human ESF cell decidualization. Therefore, ATOH8 may be a major upstream regulator of the WNT/FZD-FOXO1 pathway, previously shown to be critical for human endometrial decidualization. Finally, we explored possible regulators of ATOH8 expression during human ESF decidualization. BMP2 significantly enhanced ATOH8 expression when cells were stimulated to undergo decidualization, while an ALK2/3 inhibitor reduced ATOH8 expression. Finally, although the steroids progesterone plus estradiol did not affect ATOH8 expression, the addition of cyclic adenosine monophosphate (cAMP) analogue alone represented the major effect of ATOH8 expression when cells were stimulated to undergo decidualization. Our results suggest that ATOH8 plays a crucial role in human ESF decidualization and that BMP2 plus cAMP are major regulators of ATOH8 expression.


Assuntos
Endométrio , Placenta , Feminino , Humanos , Gravidez , Proteína Morfogenética Óssea 2/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Decídua/metabolismo , Endométrio/metabolismo , Receptores Frizzled/metabolismo , Células Estromais/metabolismo , Útero
7.
Cells ; 12(21)2023 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-37947657

RESUMO

Familial Exudative Vitreoretinopathy (FEVR), Norrie disease, and persistent fetal vascular syndrome (PFVS) are extremely rare retinopathies that are clinically distinct but are unified by abnormal retinal endothelial cell function, and subsequent irregular retinal vascular development and/or aberrant inner blood-retinal-barrier (iBRB) function. The early angiogenesis of the retina and its iBRB is a delicate process that is mediated by the canonical Norrin Wnt-signaling pathway in retinal endothelial cells. Pathogenic variants in genes that play key roles within this pathway, such as NDP, FZD4, TSPAN12, and LRP5, have been associated with the incidence of these retinal diseases. Recent efforts to further elucidate the etiology of these conditions have not only highlighted their multigenic nature but have also resulted in the discovery of pathological variants in additional genes such as CTNNB1, KIF11, and ZNF408, some of which operate outside of the Norrin Wnt-signaling pathway. Recent discoveries of FEVR-linked variants in two other Catenin genes (CTNND1, CTNNA1) and the Endoplasmic Reticulum Membrane Complex Subunit-1 gene (EMC1) suggest that we will continue to find additional genes that impact the neural retinal vasculature, especially in multi-syndromic conditions. The goal of this review is to briefly highlight the current understanding of the roles of their encoded proteins in retinal endothelial cells to understand the essential functional mechanisms that can be altered to cause these very rare pediatric retinal vascular diseases.


Assuntos
Doenças Retinianas , Doenças Vasculares , Humanos , Criança , Vitreorretinopatias Exsudativas Familiares/metabolismo , Células Endoteliais/metabolismo , Tetraspaninas/metabolismo , Doenças Retinianas/metabolismo , Doenças Vasculares/metabolismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo
8.
Curr Biol ; 33(24): 5340-5354.e6, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-37995695

RESUMO

The core planar polarity pathway consists of six proteins that form asymmetric intercellular complexes that segregate to opposite cell ends in developing tissues and specify polarized cell structures or behaviors. Within these complexes, the atypical cadherin Flamingo localizes on both sides of intercellular junctions, where it interacts homophilically in trans via its cadherin repeats, whereas the transmembrane proteins Frizzled and Strabismus localize to the opposite sides of apposing junctions. However, the molecular mechanisms underlying the formation of such asymmetric complexes are poorly understood. Using a novel tissue culture system, we determine the minimum requirements for asymmetric complex assembly in the absence of confounding feedback mechanisms. We show that complexes are intrinsically asymmetric and that an interaction of Frizzled and Flamingo in one cell with Flamingo in the neighboring cell is the key symmetry-breaking step. In contrast, Strabismus is unable to promote homophilic Flamingo trans binding and is only recruited into complexes once Frizzled has entered on the opposite side. This interaction with Strabismus requires intact intracellular loops of the seven-pass transmembrane domain of Flamingo. Once recruited, Strabismus stabilizes the intercellular complexes together with the three cytoplasmic core proteins. We propose a model whereby Flamingo exists in a closed conformation and binding of Frizzled in one cell results in a conformational change that allows its cadherin repeats to interact with a Flamingo molecule in the neighboring cell. Flamingo in the adjacent cell then undergoes a further change in the seven-pass transmembrane region that promotes the recruitment of Strabismus.


Assuntos
Proteínas de Drosophila , Estrabismo , Humanos , Proteínas de Drosophila/metabolismo , Receptores Frizzled/metabolismo , Proteínas de Membrana/metabolismo , Caderinas/genética , Caderinas/metabolismo , Polaridade Celular
9.
Cell Rep ; 42(11): 113354, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37917586

RESUMO

The study of fallopian tube (FT) function in health and disease has been hampered by limited knowledge of FT stem cells and lack of in vitro models of stem cell renewal and differentiation. Using optimized organoid culture conditions to address these limitations, we find that FT stem cell renewal is highly dependent on WNT/ß-catenin signaling and engineer endogenous WNT/ß-catenin signaling reporter organoids to biomark, isolate, and characterize these cells. Using functional approaches, as well as bulk and single-cell transcriptomics analyses, we show that an endogenous hormonally regulated WNT7A-FZD5 signaling axis is critical for stem cell renewal and that WNT/ß-catenin pathway-activated cells form a distinct transcriptomic cluster of FT cells enriched in extracellular matrix (ECM) remodeling and integrin signaling pathways. Overall, we provide a deep characterization of FT stem cells and their molecular requirements for self-renewal, paving the way for mechanistic work investigating the role of stem cells in FT health and disease.


Assuntos
Tubas Uterinas , beta Catenina , Feminino , Humanos , beta Catenina/metabolismo , Tubas Uterinas/metabolismo , Transcriptoma/genética , Células-Tronco/metabolismo , Via de Sinalização Wnt , Organoides/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Receptores Frizzled/metabolismo
10.
Medicine (Baltimore) ; 102(40): e35406, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37800830

RESUMO

BACKGROUND: Endometriosis is a chronic inflammatory, benign disorder that often co-occurs with adenomyosis and/or leiomyoma. The overall incidence of endometriosis in reproductive period women was nearly 10%. However, the exact mechanisms of endometriosis-associated pathogenesis are still unknown. METHODS: In this study, we aimed to investigate whether Frizzled-7 (FZD7) would effectively promote the development of endometriosis. The microarray-based data analysis was performed to screen endometriosis-related differentially expressed genes. This process uncovered specific hub genes, and the nexus of vital genes and ferroptosis-related genes were pinpointed. Then, we collected human endometrial and endometriotic tissues from patients with endometriosis of the ovary (n = 39) and control patients without endometriosis (n = 10, who underwent hysterectomy for uterine fibroids) to compare the expression of FZD7. RESULTS: These findings indicated that the expression of FZD7 was high compared with normal endometrium, and FZD7 may promote the progression of endometriosis. CONCLUSION: FZD7 may serve as a potential therapeutic target for endometriosis treatment.


Assuntos
Endometriose , Feminino , Humanos , Biomarcadores/metabolismo , Endometriose/genética , Endometriose/metabolismo , Endometriose/patologia , Endométrio/metabolismo , Endométrio/patologia , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Leiomioma/patologia , Ovário/patologia
11.
J Biol Chem ; 299(11): 105350, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37832874

RESUMO

Wnt signaling plays a key role in the mature CNS by regulating trafficking of NMDA-type glutamate receptors and intrinsic properties of neurons. The Wnt receptor ROR2 has been identified as a necessary component of the neuronal Wnt5a/Ca2+ signaling pathway that regulates synaptic and neuronal function. Since ROR2 is considered a pseudokinase, its mechanism for downstream signaling upon ligand binding has been controversial. It has been suggested that its role is to function as a coreceptor of a G-protein-coupled Wnt receptor of the Frizzled family. We show that chemically induced homodimerization of ROR2 is sufficient to recapitulate key signaling events downstream of receptor activation in neurons, including PKC and JNK kinases activation, elevation of somatic and dendritic Ca2+ levels, and increased trafficking of NMDARs to synapses. In addition, we show that homodimerization of ROR2 induces phosphorylation of the receptor on Tyr residues. Point mutations in the conserved but presumed nonfunctional ATP-binding site of the receptor prevent its phosphorylation, as well as downstream signaling. This suggests an active kinase domain. Our results indicate that ROR2 can signal independently of Frizzled receptors to regulate the trafficking of a key synaptic component. Additionally, they suggest that homodimerization can overcome structural conformations that render the tyrosine kinase inactive. A better understanding of ROR2 signaling is crucial for comprehending the regulation of synaptic and neuronal function in normal brain processes in mature animals.


Assuntos
Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Via de Sinalização Wnt , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Neurônios/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt-5a/metabolismo , Dimerização
12.
Development ; 150(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37602496

RESUMO

Butterfly color patterns provide visible and biodiverse phenotypic readouts of the patterning processes. Although the secreted ligand WntA has been shown to instruct the color pattern formation in butterflies, its mode of reception remains elusive. Butterfly genomes encode four homologs of the Frizzled-family of Wnt receptors. Here, we show that CRISPR mosaic knockouts of frizzled2 (fz2) phenocopy the color pattern effects of WntA loss of function in multiple nymphalids. Whereas WntA mosaic clones result in intermediate patterns of reduced size, fz2 clones are cell-autonomous, consistent with a morphogen function. Shifts in expression of WntA and fz2 in WntA crispant pupae show that they are under positive and negative feedback, respectively. Fz1 is required for Wnt-independent planar cell polarity in the wing epithelium. Fz3 and Fz4 show phenotypes consistent with Wnt competitive-antagonist functions in vein formation (Fz3 and Fz4), wing margin specification (Fz3), and color patterning in the Discalis and Marginal Band Systems (Fz4). Overall, these data show that the WntA/Frizzled2 morphogen-receptor pair forms a signaling axis that instructs butterfly color patterning and shed light on the functional diversity of insect Frizzled receptors.


Assuntos
Borboletas , Pigmentação , Animais , Pigmentação/genética , Borboletas/genética , Borboletas/metabolismo , Transdução de Sinais/genética , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Asas de Animais/metabolismo
13.
FASEB J ; 37(9): e23147, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37585277

RESUMO

Long-term spaceflight can result in bone loss and osteoblast dysfunction. Frizzled-9 (Fzd9) is a Wnt receptor of the frizzled family that is vital for osteoblast differentiation and bone formation. In the present study, we elucidated whether Fzd9 plays a role in osteoblast dysfunction induced by simulated microgravity (SMG). After 1-7 days of SMG, osteogenic markers such as alkaline phosphatase (ALP), osteopontin (OPN), and Runt-related transcription factor 2 (RUNX2) were decreased, accompanied by a decrease in Fzd9 expression. Furthermore, Fzd9 expression decreased in the rat femur after 3 weeks of hindlimb unloading. In contrast, Fzd9 overexpression counteracted the decrease in ALP, OPN, and RUNX2 induced by SMG in osteoblasts. Moreover, SMG regulated phosphorylated glycogen synthase kinase-3ß (pGSK3ß) and ß-catenin expression or sublocalization. However, Fzd9 overexpression did not affect pGSK3ß and ß-catenin expression or sublocalization induced by SMG. In addition, Fzd9 overexpression regulated protein kinase B also known as Akt and extracellular signal-regulated kinase (ERK) phosphorylation and induced F-actin polymerization to form the actin cap, press the nuclei, and increase nuclear pore size, thereby promoting the nuclear translocation of Yes-associated protein (YAP). Our study findings provide mechanistic insights into the role of Fzd9 in triggering actin polymerization and activating YAP to rescue SMG-induced osteoblast dysfunction and suggest that Fzd9 is a potential target to restore osteoblast function in individuals with bone diseases and after spaceflight.


Assuntos
Actinas , Receptores Frizzled , Osteoblastos , Ausência de Peso , Proteínas de Sinalização YAP , Animais , Ratos , Actinas/metabolismo , beta Catenina/metabolismo , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Osteoblastos/metabolismo , Osteogênese , Polimerização , Ausência de Peso/efeitos adversos , Receptores Frizzled/metabolismo , Proteínas de Sinalização YAP/metabolismo
14.
Dev Cell ; 58(20): 2063-2079.e9, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37557176

RESUMO

Proper localization of receptors for synaptic organizing factors is crucial for synapse formation. Wnt proteins promote synapse assembly through Frizzled (Fz) receptors. In hippocampal neurons, the surface and synaptic localization of Fz5 is regulated by neuronal activity, but the mechanisms involved remain poorly understood. Here, we report that all Fz receptors can be post-translationally modified by S-acylation and that Fz5 is S-acylated on three C-terminal cysteines by zDHHC5. S-acylation is essential for Fz5 localization to the cell surface, axons, and presynaptic sites. Notably, S-acylation-deficient Fz5 is internalized faster, affecting its association with signalosome components at the cell surface. S-acylation-deficient Fz5 also fails to activate canonical and divergent canonical Wnt pathways. Fz5 S-acylation levels are regulated by the pattern of neuronal activity. In vivo studies demonstrate that S-acylation-deficient Fz5 expression fails to induce presynaptic assembly. Our studies show that S-acylation of Frizzled receptors is a mechanism controlling their localization and function.


Assuntos
Receptores Frizzled , Roedores , Animais , Roedores/metabolismo , Receptores Frizzled/metabolismo , Via de Sinalização Wnt , Hipocampo/metabolismo , Acilação
15.
PLoS Genet ; 19(7): e1010849, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37463168

RESUMO

Epithelial tissues can be polarized along two axes: in addition to apical-basal polarity they are often also polarized within the plane of the epithelium, known as planar cell polarity (PCP). PCP depends upon the conserved Wnt/Frizzled (Fz) signaling factors, including Fz itself and Van Gogh (Vang/Vangl in mammals). Here, taking advantage of the complementary features of Drosophila wing and mouse skin PCP establishment, we dissect how Vang/Vangl phosphorylation on a specific conserved tyrosine residue affects its interaction with two cytoplasmic core PCP factors, Dishevelled (Dsh/Dvl1-3 in mammals) and Prickle (Pk/Pk1-3). We demonstrate that Pk and Dsh/Dvl bind to Vang/Vangl in an overlapping region centered around this tyrosine. Strikingly, Vang/Vangl phosphorylation promotes its binding to Prickle, a key effector of the Vang/Vangl complex, and inhibits its interaction with Dishevelled. Thus phosphorylation of this tyrosine appears to promote the formation of the mature Vang/Vangl-Pk complex during PCP establishment and conversely it inhibits the Vang interaction with the antagonistic effector Dishevelled. Intriguingly, the phosphorylation state of this tyrosine might thus serve as a switch between transient interactions with Dishevelled and stable formation of Vang-Pk complexes during PCP establishment.


Assuntos
Polaridade Celular , Proteínas Desgrenhadas , Proteínas de Drosophila , Proteínas de Membrana , Animais , Camundongos , Polaridade Celular/genética , Proteínas Desgrenhadas/genética , Proteínas Desgrenhadas/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Receptores Frizzled/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosforilação
16.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298503

RESUMO

Ex vivo monitored human CD34+ stem cells (SCs) injected into myocardium scar tissue have shown real benefits for the recovery of patients with myocardial infarctions. They have been used previously in clinical trials with hopeful results and are expected to be promising for cardiac regenerative medicine following severe acute myocardial infarctions. However, some debates on their potential efficacy in cardiac regenerative therapies remain to be clarified. To elucidate the levels of CD34+ SC implication and contribution in cardiac regeneration, better identification of the main regulators, pathways, and genes involved in their potential cardiovascular differentiation and paracrine secretion needs to be determined. We first developed a protocol thought to commit human CD34+ SCs purified from cord blood toward an early cardiovascular lineage. Then, by using a microarray-based approach, we followed their gene expression during differentiation. We compared the transcriptome of undifferentiated CD34+ cells to those induced at two stages of differentiation (i.e., day three and day fourteen), with human cardiomyocyte progenitor cells (CMPCs), as well as cardiomyocytes as controls. Interestingly, in the treated cells, we observed an increase in the expressions of the main regulators usually present in cardiovascular cells. We identified cell surface markers of the cardiac mesoderm, such as kinase insert domain receptor (KDR) and the cardiogenic surface receptor Frizzled 4 (FZD4), induced in the differentiated cells in comparison to undifferentiated CD34+ cells. The Wnt and TGF-ß pathways appeared to be involved in this activation. This study underlined the real capacity of effectively stimulated CD34+ SCs to express cardiac markers and, once induced, allowed the identification of markers that are known to be involved in vascular and early cardiogenesis, demonstrating their potential priming towards cardiovascular cells. These findings could complement their paracrine positive effects known in cell therapy for heart disease and may help improve the efficacy and safety of using ex vivo expanded CD34+ SCs.


Assuntos
Infarto do Miocárdio , Células-Tronco , Humanos , Células-Tronco/metabolismo , Miocárdio/metabolismo , Antígenos CD34/metabolismo , Miócitos Cardíacos/metabolismo , Infarto do Miocárdio/metabolismo , Diferenciação Celular/fisiologia , Moléculas de Adesão Celular/metabolismo , Receptores Frizzled/metabolismo
17.
Nat Commun ; 14(1): 2947, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268690

RESUMO

Derangements of the blood-brain barrier (BBB) or blood-retinal barrier (BRB) occur in disorders ranging from stroke, cancer, diabetic retinopathy, and Alzheimer's disease. The Norrin/FZD4/TSPAN12 pathway activates WNT/ß-catenin signaling, which is essential for BBB and BRB function. However, systemic pharmacologic FZD4 stimulation is hindered by obligate palmitoylation and insolubility of native WNTs and suboptimal properties of the FZD4-selective ligand Norrin. Here, we develop L6-F4-2, a non-lipidated, FZD4-specific surrogate which significantly improves subpicomolar affinity versus native Norrin. In Norrin knockout (NdpKO) mice, L6-F4-2 not only potently reverses neonatal retinal angiogenesis deficits, but also restores BRB and BBB function. In adult C57Bl/6J mice, post-stroke systemic delivery of L6-F4-2 strongly reduces BBB permeability, infarction, and edema, while improving neurologic score and capillary pericyte coverage. Our findings reveal systemic efficacy of a bioengineered FZD4-selective WNT surrogate during ischemic BBB dysfunction, with potential applicability to adult CNS disorders characterized by an aberrant blood-brain barrier.


Assuntos
Barreira Hematoencefálica , Receptores Frizzled , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Retina/metabolismo , Barreira Hematorretiniana/metabolismo , Via de Sinalização Wnt
18.
J Periodontal Res ; 58(5): 907-918, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37340863

RESUMO

OBJECTIVE: To verify the role of YAP/WNT5A/FZD4 axis in stretch-induced osteogenic differentiation of hPDLCs. BACKGROUND: During orthodontic tooth movement, differentiation of human periodontal ligament cells (hPDLCs) at the tension side of the periodontal ligament mediates new bone formation. WNT5A promotes osteogenesis and its regulator Yes-associated protein (YAP) is responsive to mechanical stimulation in hPDLCs. However, the mechanisms of YAP and WNT5A in alveolar bone remodeling remain unclear. METHODS: Cyclic stretch was applied to hPDLCs to mimic the orthodontic stretching force. Osteogenic differentiation was determined by alkaline phosphatase (ALP) activity, Alizarin Red staining, qRT-PCR and western blotting. To detect activation of YAP and expression of WNT5A and its receptor Frizzled-4 (FZD4), western blotting, immunofluorescence, qRT-PCR and ELISA were performed. Verteporfin, Lats-IN-1, small interfering RNAs and recombinant protein were used to explore the relationship of YAP, WNT5A and FZD4, and the effect of their relationship on stretch-induced osteogenesis of hPDLCs. RESULTS: WNT5A, FZD4 and nuclear localization of YAP were upregulated by cyclic stretch. YAP positively regulated WNT5A and FZD4 expression and osteogenic differentiation of hPDLCs under cyclic stretch by YAP inhibition or activation assay. Knockdown of WNT5A and FZD4 attenuated YAP-induced and stretch-induced osteogenic differentiation. Recombinant WNT5A rescued the suppressed osteogenic differentiation by YAP inhibitor in hPDLCs, whereas knockdown of FZD4 weakened the effect of WNT5A and amplified the suppression. CONCLUSIONS: WNT5A/FZD4 could be positively regulated by YAP and the YAP/WNT5A/FZD4 axis mediated osteogenic differentiation of hPDLCs under cyclic stretch. This study provided further insight into the biological mechanism of orthodontic tooth movement.


Assuntos
Osteogênese , Ligamento Periodontal , Humanos , Células Cultivadas , Diferenciação Celular , Proteínas/metabolismo , Proteína Wnt-5a/metabolismo , Receptores Frizzled/metabolismo
19.
Genome Biol ; 24(1): 92, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095549

RESUMO

BACKGROUND: Extensive studies have revealed the function and mechanism of lncRNAs in development and differentiation, but the majority have focused on those lncRNAs adjacent to protein-coding genes. In contrast, lncRNAs located in gene deserts are rarely explored. Here, we utilize multiple differentiation systems to dissect the role of a desert lncRNA, HIDEN (human IMP1-associated "desert" definitive endoderm lncRNA), in definitive endoderm differentiation from human pluripotent stem cells. RESULTS: We show that desert lncRNAs are highly expressed with cell-stage-specific patterns and conserved subcellular localization during stem cell differentiation. We then focus on the desert lncRNA HIDEN which is upregulated and plays a vital role during human endoderm differentiation. We find depletion of HIDEN by either shRNA or promoter deletion significantly impairs human endoderm differentiation. HIDEN functionally interacts with RNA-binding protein IMP1 (IGF2BP1), which is also required for endoderm differentiation. Loss of HIDEN or IMP1 results in reduced WNT activity, and WNT agonist rescues endoderm differentiation deficiency caused by the depletion of HIDEN or IMP1. Moreover, HIDEN depletion reduces the interaction between IMP1 protein and FZD5 mRNA and causes the destabilization of FZD5 mRNA, which is a WNT receptor and necessary for definitive endoderm differentiation. CONCLUSIONS: These data suggest that desert lncRNA HIDEN facilitates the interaction between IMP1 and FZD5 mRNA, stabilizing FZD5 mRNA which activates WNT signaling and promotes human definitive endoderm differentiation.


Assuntos
Diferenciação Celular , Endoderma , Receptores Frizzled , RNA Longo não Codificante , Proteínas de Ligação a RNA , Humanos , Diferenciação Celular/genética , Receptores Frizzled/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética
20.
Sci Signal ; 16(779): eabo4974, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37014927

RESUMO

Frizzleds (FZDs) are G protein-coupled receptors (GPCRs) that bind to WNT family ligands. FZDs signal through multiple effector proteins, including Dishevelled (DVL), which acts as a hub for several downstream signaling pathways. To understand how WNT binding to FZD stimulates intracellular signaling and influences downstream pathway selectivity, we investigated the dynamic changes in the FZD5-DVL2 interaction elicited by WNT-3A and WNT-5A. Ligand-induced changes in bioluminescence resonance energy transfer (BRET) between FZD5 and DVL2 or the isolated FZD-binding DEP domain of DVL2 revealed a composite response consisting of both DVL2 recruitment and conformational dynamics in the FZD5-DVL2 complex. The combination of different BRET paradigms enabled us to identify ligand-dependent conformational dynamics in the FZD5-DVL2 complex and distinguish them from ligand-induced recruitment of DVL2 or DEP to FZD5. The observed agonist-induced conformational changes at the receptor-transducer interface suggest that extracellular agonist and intracellular transducers cooperate through transmembrane allosteric interaction with FZDs in a ternary complex reminiscent of that of classical GPCRs.


Assuntos
Receptores Frizzled , Transdução de Sinais , Receptores Frizzled/metabolismo , Ligantes , Receptores Acoplados a Proteínas G/metabolismo , Via de Sinalização Wnt , Proteínas Desgrenhadas/metabolismo , Fosfoproteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...